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In the past decade, artificial intelligence (AI) techniques have been successfully applied to 
recommender systems employed in many e-commerce companies, such as Amazon, eBay, 
Netflix, etc., which aim to provide personalized recommendations on products or services. 
Among various AI-based recommendation techniques, collaborative filtering has proven 
to be one of the most promising methods. However, most collaborative-filtering-based 
recommender systems, especially the newly launched ones, have trouble making accurate 
recommendations for users. This is caused by the data sparsity issue in recommender 
systems, where little existing rating information is available. To address this issue, one of 
the most effective practices is applying transfer learning techniques by leveraging relatively 
rich collaborative data knowledge from related systems, which have been well running. 
Previous transfer learning models for recommender systems often assume that a sufficient 
set of entity correspondences (either user or item) across the target and auxiliary systems 
(a.k.a. source systems) is given in advance. This assumption does not hold in many real-
world scenarios where entity correspondences across systems are usually unknown, and 
the cost of identifying them can be expensive. In this paper, we propose a new transfer 
learning framework for recommender systems, which relaxes the above assumption to 
facilitate flexible knowledge transfer across different systems with low cost by using an 
active learning principle to construct entity correspondences across systems. Specifically, 
for the purpose of maximizing knowledge transfer, we first iteratively select entities in the 
target system based on some criterion to query their correspondences in the source system. 
We then plug the actively constructed entity correspondences into a general transferred 
collaborative-filtering model to improve recommendation quality. Based on the framework, 
we propose three solutions by specifying three state-of-the-art collaborative filtering 
methods, namely Maximum-Margin Matrix Factorization, Regularized Low-rank Matrix 
Factorization, and Probabilistic Matrix Factorization. We perform extensive experiments on 
two real-world datasets to verify the effectiveness of our proposed framework and the 
three specified solutions for cross-system recommendation.
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1. Introduction

With the development and explosion of Web 1.0 and 2.0 technologies, recommender systems have been part of the In-
ternet in the past two decades to provide recommendations on items, e.g., products or services. The goal of recommender 
systems is to suggest personalized items that match the interests of each specific user [1].1 To understand users’ interests, 
a typical method is to ask users to fill their personal information and answer some predefined questions, and then sum-
marize the information to build specific profiles for each user manually. With the built user profiles, one can recommend 
relevant items to each user. Instead of manually conducting surveys to build users profiles and generating recommended 
item list, modern recommender systems have been adopting various artificial intelligence (AI) techniques to learn users pro-
files, predict users’ intensions, and recommend items of interest automatically. In general, commonly used AI techniques for 
recommender systems include collaborative filtering (CF), content-based filtering, case-based reasoning, constraint satisfac-
tion with a domain-dependent knowledge base, etc. [2,3]. Among these AI techniques, CF, especially matrix factorization, has 
proven to be one of the most promising methods, and been successfully used in many commercial recommender systems.

The goal of CF-based recommender systems is to generate item recommendations for a user by utilizing the observed 
preferences of other users whose historical behaviors are correlated with those of the target user. However, most CF-based 
recommender systems perform poorly when little collaborative information, e.g., historical ratings on items, is available. 
This is referred to as the data sparsity problem, which is one of the most common and major challenging problems in 
many newly launched recommender systems. To address the data sparsity problem, transfer learning has been proposed 
by exploiting auxiliary collaborative data from some related recommender system(s). In a nutshell, transfer learning is a 
promising paradigm of machine learning, which aims to adapt a predictive model across different domains or tasks with 
little additional human supervision by extracting and transferring common knowledge across the source and the target 
domains or tasks [4,5]. To make a success of transfer learning, discovering commonality between the source and the target 
domains or tasks is crucial. A motivation behind applying transfer learning to recommender systems is that many users are 
active in multiple social medias (e.g., Twitter, Facebook, etc.), or purchasing products from various e-commercial websites 
(e.g., Amazon, Taobao, etc.), thus, a source CF model built with rich collaborative data can be compressed by identifying 
a same set of users across different websites as a prior to assist the training of a more precise CF model for the target 
recommender system [6,7]. This approach is also known as cross-system CF.

Previous transfer-learning approaches to cross-system CF can be classified into two categories: 1) CF methods with cross-
system entity correspondences, and 2) CF methods without cross-system entity correspondences. In the former category, 
Mehta and Hofmann [8] and Pan et al. [9,10], respectively, proposed to embed the cross-system entity correspondences 
as constraints to jointly learn the CF models for the source and the target recommender systems with an aim to im-
prove the performance of the target CF system. Although these approaches have shown promising results, they require the 
existence of fully or sufficient entity-correspondence mappings, i.e., user correspondence or item correspondence, across 
different systems. This strong prerequisite is often difficult to satisfy in most real-world scenarios, as some specific users 
or items in one system may be missing in other systems. For example, user populations of Twitter and Facebook services 
are overlapping, but not identical, as is the case with Amazon and eBay. In addition, even though there may exist potential 
entity-correspondence mappings between different systems, they may be expensive or time-consuming to be recognized as 
users may use different names, or an item may be named differently in different online commercial systems. As illustrated 
in Fig. 1, we have two movie recommender systems A and B. In general, different movies may share a same name. For 
instance, the movie “The Island” can be referred to as a American science fiction/thriller film released in 2005, or a Russian 
biographical film about a fictional 20th century Eastern Orthodox monk released in 2006. In this case, for the movie “The 
Island” in system A, we are not sure which version of the movie “The Island” in system B is its correspondence. Therefore, 
to identify whether two movies are corresponding to each other, one may need to compare their meta data or even need 
to watch the trailers if the meta information is missing, which can be very time-consuming.

In the latter category of approaches where no assumption is made on pre-existing cross-system mappings, researches 
have been focused on capturing the group-level behaviors of users for knowledge transfer. For example, Li et al. [6] proposed 
a codebook-based-transfer (CBT) method for cross-system CF. The main assumption of CBT is that specific users or items may 
be different across systems, but the groups of them, e.g., based on interests, ages, etc., should behave similarly. Therefore, 
CBT aims to first generate a set of cluster-level user-item rating patterns from the source system, which is referred to as 
a codebook. The codebook can then be used as a prior for learning a CF model for the target system. Li et al. [7] further 
proposed a probabilistic model for cross-system CF that shares a similar motivation with CBT. Compared to the approaches 
in the former category, which make use of cross-system entity correspondences as a bridge, however, these approaches are 
less effective for knowledge transfer across recommender systems.

In this paper, we assume that the cross-system entity correspondences are unknown in general, but that the map-
pings can be identified with cost. Based on this assumption, we propose a unified framework to actively construct 
entity-correspondence mappings across recommender systems, where a flexible transfer learning approach with partial 

1 In a broad definition, any software system that provides suggestions on items to purchase, to subscribe, to use, or to invest can be regarded as a 
recommender system. In this sense, computational advertising, query suggestion, etc., can be also seen as examples of recommendations.
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Fig. 1. An example of two recommender systems with ambiguous movies names.

entity-correspondence mappings between systems and a strategy for actively constructing cross-system correspondences 
are integrated. To be specific, the proposed framework consists of two main components:

• an active learning approach to constructing entity correspondences across systems in an iterative manner, and
• an extended matrix factorization approach to cross-system CF that flexibly leverages partial entity-correspondence map-

pings as a bridge for knowledge transfer.

The proposed framework is general, where various extended matrix factorization methods in a transfer learning man-
ner can be integrated. In this paper, we offer three specific solutions by extending and plugging three well-known CF 
methods, namely Maximum-Margin Matrix Factorization (MMMF), Regularized Low-rank Matrix Factorization (RLMF), and 
Probabilistic Matrix Factorization (PMF) into the framework. Specifically, we extend the three popular CF methods in the 
transfer learning manner such that they can flexibly transfer knowledge across domains with partial cross-domain entity 
correspondences, and propose specific active learning strategies on top of the extended CF methods to actively construct 
entity correspondences across domains. Note that matrix factorization based CF is a rapidly advancing research area, where 
several new techniques are proposed every year. According to a recent comparative study of CF algorithms [11], various 
state-of-the-art matrix factorization methods are comparable to each other in general. Some methods work better on rela-
tively smaller datasets, while others work better on larger datasets, in terms of user or item size. Some methods work better 
when historical ratings of items by users are sparse, while others work better when there are sufficient historical ratings. 
In this work, our focus is not discussing which matrix factorization method can be adapted into our framework to achieve 
the best performance for knowledge transfer across different recommender systems, but providing a general active transfer 
learning framework, where researchers can extend their favor matrix factorization methods for different applications and 
datasets.

Compared to our previous work [12], the contributions of this paper are summarized as follows.

1. We generalize the MMMF-based active transfer learning method proposed in [12] to a unified framework.
2. Based on the framework, we further specify two more solutions based on other well-known CF methods, namely RLMF 

and PMF.
3. We conduct extensive experiments to verify the effectiveness of the proposed active transfer learning framework for 

cross-system CF.

The rest of this paper is organized as follows. In the following section, we start by reviewing some related work. In 
Section 3, we introduce the notations and preliminaries used in this paper. In Section 4, we first describe the proposed 
framework at a high level, and then present three specific solutions in detail. After that we show experiments that are 
conducted on two real-world datasets to verify the effectiveness of the proposed framework and the three specific solutions 
in Section 5. Finally, we conclude our work in Section 6.

2. Related work

Recommender systems emerged as an independent research area in the mid-1990s [13,14], and attracted more and 
more attention from both academia and industry since the Netflix competition2 held between 2006 and 2009. Besides prod-
ucts/services recommendation for e-commerce, recommender systems have been employed in many other application areas, 
such as configuration for products design [15], requirement engineering [16], music recommendation [17], tag recommen-
dation in the social web [18], etc. Among various techniques for recommender systems, AI-based methods, specially CF 
methods through matrix factorization, have proven to be effective and promising [19,11].

2 http :/ /www.netflixprize .com.

http://www.netflixprize.com
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Besides the work mentioned in Section 1, there is some other related work on applying transfer learning to cross-system 
CF. For instance, Pan et al. [20] proposed an approach known as TIF (Transfer by Integrative Factorization) to integrate the 
auxiliary uncertain ratings, which are distributions of ratings instead of exact point-wise scores, as constraints into the target 
matrix factorization problem. Cao et al. [21] and Zhang et al. [22], respectively, extended the Collective Matrix Factorization 
(CMF) [23] method to solve multi-domain CF problems in a multi-task learning manner. In their work, a CF model is learned 
for each domain by exploiting the correlations or similarities among multiple domains. Tang et al. [24] applied collective 
learning techniques for multi-domain Web search with implicit feedbacks. However, most of the existing methods require 
that the entities, either users or items, across different systems to be identical, and the correspondences between domains 
are given in advance. As we discussed in the previous section, this assumption is impractical in many real-world scenarios.

Our work is also related to some previous work on active learning for CF [25–29], which aims to solve the sparsity 
problem in CF by actively querying users to give ratings on selected items. A common assumption behind this direction of 
work is that the users queried by an active learner are always able to provide ratings on the selected items in the system. 
However, in many real-world scenarios, this assumption is hard to satisfy because users may only be familiar with some 
items in the system, and may fail to provide ratings on the actively selected items. For example, a user may only watched 
a few movies, and is not able to provide accurate ratings on other movies that he/she has not watched. Alternatively, in 
this paper, instead of actively asking users to give ratings on selected items, we propose to actively construct cross-system 
entity correspondence mappings as a bridge for knowledge transfer across recommender systems to solve the data sparsity 
problem in the target recommender system.

Another related research area is to develop a unified framework for active learning and transfer learning. Previous work in 
this research direction is focused on how to actively query instances in the target domain for labels in order to learn a target 
predictive model by leveraging source domain knowledge [30–36]. Existing methods can be classified into three categories: 
1) performing transfer and active learning once, respectively, in a pipeline [37,30,31], 2) performing transfer and active 
learning alternatingly [32–34,36], and 3) integrating transfer and active learning into a unified optimization problem [35]. 
Most of them are focused on classification or regression problems. Different from previous work, in this paper, our study 
on active transfer learning is focused on addressing the data sparsity problem for CF instead of traditional classification 
or regression problems. Moreover, the proposed active learning strategy aims to construct entity correspondences between 
systems instead of querying a “class label” for an instance. Therefore, existing methods on combining active learning and 
transfer learning cannot be directly applied to our problem.

3. Notations & preliminaries

Denote by D the target CF task, which is associated with an extremely sparse preference matrix X(d) ∈ R
md×nd , where 

md is the number of users and nd is the number of items. Each entry x(d)
uv of X(d) corresponds to user u’s preference on 

item v . If x(d)
uv �= 0, it means for user u, the preference on item v is observed, otherwise unobserved. Let I(d) be the set of 

all observed (u, v) pairs of X(d) . The goal is to predict users’ unobserved preferences based on a few historically observed 
preferences. For rating-based recommender systems, preferences are represented by numerical values (e.g., [1, 2, ..., 5], or 
one star through five stars). In cross-system CF, besides D, suppose we have a source CF task S which is associated with a 
relatively dense preference matrix X(s) ∈ R

ms×ns , where ms is the number of users and ns is the number of items. Similarly, 
let I(s) be the set of all observed (u, v) pairs of X(s) . Furthermore, we assume that cross-system entity correspondences 
are unknown, but can be identified with cost. Given a budget in terms of the maximum number of cross-system entity 
correspondences to be constructed, our goal is to 1) actively construct entity correspondences across the source and the 
target systems, and 2) make use of them for knowledge transfer from the source task S to the target task D. In the sequel, 
we denote by X∗,i the ith column of the matrix X, and superscript � the transpose of a vector or matrix, and use the words 
“domain” and “system” interchangeably.

3.1. Matrix factorization for collaborative filtering

Matrix factorization [38,39,19] is one family of state-of-the-art algorithms in CF [40]. In matrix factorization for CF, given 
a sparse matrix X, one can model the users and items using low-rank factor matrices U ∈ R

k×m and V ∈ R
k×n , respectively, 

where the uth user and the vth item are represented by U∗u and V∗v , i.e., the uth and vth column of U and V, respectively. 
The objective of most matrix factorization methods for CF can be summarized in a general minimization problem as follows,

min
U,V,�

� (U,V,X;�) + λR (U,V) , (1)

where �(·) is a loss function of factorization on the target rating matrix X, and � is a set of parameters. The second term in 
the objective is a regularization term on the low-rank factor matrices of users and items, and λ ≥ 0 is a trade-off parameter.

Different forms of the loss function �(·) lead to different approaches. Some popular loss functions include the Hinge 
loss with the form h(z) = (1 − z)+ = max(0, 1 − z), the negative-log-posterior loss � = − ln p(U, V|X) or equivalently the 
sum-of-squared-errors loss � = ∑

u,v(xuv − U�∗uV∗v)2. In the following sections, we review three popular matrix factor-
ization methods namely Maximum-Margin Matrix Factorization (MMMF) [41], Regularized Low-rank Matrix Factorization 
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(RLMF) [19], and Probabilistic Matrix Factorization (PMF) [42], which will be extended and plugged in our proposed frame-
work for cross-system CF.

3.1.1. Maximum-Margin Matrix Factorization
MMMF [41] aims to learn a fully observed matrix Y ∈ R

m×n to approximate the target preference matrix X ∈ R
m×n

by maximizing the predictive margin and minimizing the trace norm of Y. Specially, in binary preference predictions, 
xuv ∈ {−1, +1}, where xuv = +1 denotes that the user u likes the item v , while xuv = −1 denotes dislike. By consid-
ering hard-margin matrix factorization, the goal of MMMF is to find a minimum trace norm matrix Y that matches the 
observed preferences with a margin of one, i.e., yuv xuv ≥ 1 for all (u, v) ∈ I , where I is the set of observed (u, v) pairs 
of X. By introducing slack variables ξuv ≥ 0, the hard-margin constraint can be relaxed by requiring yuv xuv ≥ 1 − ξuv for all 
(u, v) ∈ I , and minimizing a trade-off between the trace norm and the slack. This results in the following objective,

min
Y

∑
(u,v)∈I

h (yuv xuv) + λ‖Y‖� , (2)

where h(z) = (1 − z)+ = max(0, 1 − z) is the Hinge loss, ‖ · ‖� denotes the trace norm, and λ ≥ 0 is a trade-off parameter. 
As proposed in [38], the objective (2) can be extended to ordinal rating predictions, and solved efficiently. To be spe-
cific, suppose xuv ∈ {1, 2, ..., R}, one can use R − 1 thresholds θ1, θ2, ..., θR−1 to relate the predicted real-valued yuv to the 
discrete-valued xuv by requiring

θxuv−1 + 1 ≤ yuv ≤ θxuv − 1,

where θ0 = −∞ and θR = ∞. When adding slack in this case, not only the violation of the two immediate constraints 
θxuv −1 + 1 ≤ yuv and yuv ≤ θxuv − 1, but also the violation of all other implied threshold constraints θr + 1 ≤ yuv for r < xuv

and yuv ≤ θr − 1 for r ≥ xuv should be penalized. The goal by doing this is to emphasize the cost of crossing multiple 
rating-boundaries and yield a loss function that upper bounds the mean-absolute-error (MAE). By further supposing that Y
can be decomposed as Y = U�V, where U ∈ R

k×m and V ∈ R
k×n . The objective of MMMF for ordinal rating predictions can 

be written as follows,

min
U,V,�

∑
(u,v)∈I

R−1∑
r=1

h
(

T r
uv

(
θur − U�∗uV∗v

))
+ λ

(
‖U‖2

F + ‖V‖2
F

)
, (3)

where T r
uv = +1 for r ≥ xuv , while T r

uv = −1 for r < xuv , and ‖ · ‖F denotes the Frobenius norm. The thresholds � =
{θur}’s can be learned together with U and V from the data. Note that the thresholds here are user-specific, i.e., for a 
same user u, the values of the corresponding thresholds θur ’s are the same, while for different users u’s, the values of 
the corresponding thresholds θur ’s can be different. The alternating minimization approach can be applied to solve the 
optimization problem [38,19]: iteratively keep two of U, V and � fixed and optimize over the other using gradient-descent 
approaches, then switch and repeat.

3.1.2. Regularized Low-Rank Matrix Factorization
RLMF [19] is a matrix factorization approach based on regularized Singular Value Decomposition (SVD) on sparse matri-

ces. The objective of RLMF is to solve the following minimization problem,

min
U,V,bu ,bv

∑
(u,v)∈I

(
xuv −

(
r̄ + bu + bv + U�∗uV∗v

))2+λ
(
‖U‖2

F + ‖V‖2
F + b2

u + b2
v

)
, (4)

where r̄ is the observed overall averaged rating, bu and bv indicate the bias of user u and item v , respectively. The second 
term of the objective consists of a set of regularization terms on U, V, bu and bv , respectively, and λ is a trade-off parameter 
to control the impact of the regularization terms. A local minimum of the objective (4) can be obtained by performing 
gradient descent on the objective with respect to U, V, bu and bv , alternatingly.

3.1.3. Probabilistic Matrix Factorization
PMF [42] adopts a probabilistic model with Gaussian observation noise, and aims to maximize the following conditional 

distribution over the observed ratings,

p(X|U,V,σ 2) =
m∏

u=1

n∏
v=1

[
N (xuv |U�∗uV∗v ,σ 2)

]Iuv
, (5)

where N (xuv |U�∗uV∗v , σ 2) is a probability density function of a Gaussian distribution with the mean μ = U�∗uV∗v and the 
variance σ 2, and Iuv is the indicator function that is equal to 1 if the user u rates the item v , i.e., (u, v) ∈ I , and equal 
to 0 otherwise. To bound predictions within the range of valid rating values, the logistic function g(x) = 1/(1 + exp(−x)) is 
post-performed on the dot product between the user- and item-specific latent vectors, and the function t(x) = (x −1)/(R −1)
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is used to map the ratings {1, 2, ..., R} to the interval [0, 1] so that the range of valid rating values matches the range of 
predictions. This results in the following conditional distribution:

p(X|U,V,σ 2) =
m∏

u=1

n∏
v=1

[
N (xuv |g(U�∗uV∗v),σ 2)

]Iuv
. (6)

Moreover, usually, zero-mean spherical Gaussian priors are placed on the user and item latent vectors, respectively,{
p(U|σ 2

U ) = ∏m
u=1 N (U∗u |0,σ 2

U I),

p(V|σ 2
V ) = ∏n

v=1 N (V∗v |0,σ 2
V I).

(7)

In this paper, we adopt the constraint version of PMF proposed in [42], which introduces a new latent similarity con-
straint matrix H ∈ R

k×n on users. As a result, the latent vector of the user u can be represented by

U∗u = Y∗u +
∑n

h=1 IuhH∗h∑n
h=1 Iuh

, (8)

where Iuh is the indicator function that is equal to 1 if the user u rates the item h, and equal to 0 otherwise, H∗h captures 
the effect of a user having rated a particular item v on the prior mean of the user’s latent vector, and Y∗u can be seen as 
the offset added to the mean of the prior distribution to get the latent vector U∗u for the user u. By plugging (8) into (6), 
we obtain a new conditional distribution over the observed ratings as follows,

p(X|Y,V,H,σ 2) =
m∏

u=1

n∏
v=1

[
N

(
xuv |g

((
Y∗u +

∑n
h=1 IuhH∗h∑n

h=1 Iuh

)�
V∗v

)
,σ 2

)]Iuv

, (9)

where the Gaussian prior on U in (7) is replaced by the one on Y, and an additional zero-mean spherical Gaussian prior is 
placed on the latent similarity constraint matrix H:

p(H|σ 2
H ) =

n∏
w=1

N (H∗h|0,σ 2
H I). (10)

Based on the conditional distribution in (9), it can be proven that maximizing the log-posterior ln p(Y, V, H|X, σ 2, σ 2
Y , σ 2

V ,

σ 2
H ) over the user and item factor matrices with the priors is equivalent to minimizing the sum-of-squared-errors objective 

function with quadratic regularization terms formulated as follows,

min
Y,V,H

∑
(u,v)∈I

(
xuv − g

((
Y∗u +

∑n
h=1 IuhH∗h∑n

h=1 Iuh

)�
V∗v

))2

+ λY ‖Y‖2
F + λV ‖V‖2

F + λH‖H‖2
F , (11)

where λY = σ 2/σ 2
Y , λV = σ 2/σ 2

V and λH = σ 2/σ 2
H are trade-off parameters to balance the effect among the approximation 

error term and the regularization terms. A local minimum of the objective function (11) can be found by performing gradient 
decent on the objective respect to Y, V and H, alternatingly.

4. Active transfer learning for cross-system collaborative filtering

4.1. A unified framework

The overall general framework on active transfer learning for cross-system CF is described in Algorithm 1. To begin with, 
we apply a base matrix factorization method f , which will be specified in particular solutions, on the target collaborative 
data to learn a CF model for initialization. After that, we iteratively perform the following three steps:

• We choose K entities based on an entity selection function ActiveLearn(), which will be specified in particular solutions 
as well.

• We query their correspondences in the source system.
• We then apply the extended matrix factorization method f T L in the transfer learning manner on both the source and 

target collaborative data to learn an updated CF model. Note that the entity selection function ActiveLearn() is built on 
top of the base method f at the initial step or the extended method f T L at each iteration.

In the rest of this section, we first describe the idea of the extended matrix factorization method in the transfer learning 
manner f T L by assuming a set of cross-system correspondences be constructed as input, and then present the high-level 
idea on how to design ActiveLearn() to actively select entities for querying cross-system correspondences.
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Algorithm 1 Active transfer learning for cross-system CF.

Input: The factor matrices of users and items, U(s) and V(s) , learned by the source-system CF model, the sparse target-system rating matrix X(d) , a base 
matrix factorization method f , and its extension f T L in the transfer learning manner, total number of iterations T , and the number of cross-system entity 
correspondences to actively constructed at each iteration K .
Output: Factor matrices of users and items in the target system, U(d) and V(d) .

Initialize:
Apply f on X(d) to generate �(d)

0 , U(d)
0 and V(d)

0 .
for t = 0 to T do

Step 1: Set C(d) = ActiveLearn(�
(d)
t , U(d)

t , V(d)
t , K ), where C(d) is the set of the indices of the selected entities (either users or items), and |C(d)| = K .

Step 2: Query the selected target-system entities in the source system to identify their corresponding set C(s) . For simplicity, we use C to denote the 
unified indices of the constructed corresponding entities between domains.
Step 3: Perform f T L(U(s), V(s), U(d)

t , V(d)
t , X(d), C) to update �(d)

t+1, U(d)
t+1, and V(d)

t+1.
end for
Return: U(d) ← U(d)

T , and V(d) ← V(d)
T .

4.1.1. High-level idea on f T L

Denote by U(s)
C and V(s)

C the factor sub-matrices of U(s) and V(s) for the entities in the source system, whose indices are 
in C , respectively. Similarly, denote by U(d)

C and V(d)

C the factor sub-matrices for the entities in the target system, whose 
indices are in C , respectively. Here C denotes the unified indices of the constructed corresponding entities, which can be 
either users or items, between the source and target systems. The general objective of the extended matrix factorization 
method f T L with partial entity correspondences for cross-system CF can be written as follows,

min
U(d),V(d),�

�
(
U(d),V(d),X(d);�

)
+λR

(
U(d),V(d)

)
+λCR

(
U(d)
C ,V(d)

C ,U(s)
C ,V(s)

C

)
, (12)

where the last term is a regularization term that aims to use U(s)
C and V(s)

C as priors to learn more precise U(d)

C and V(d)

C , 
which can be expanded to obtain more precise U(d) and V(d) , respectively. The associated λC ≥ 0 is a trade-off parameter to 
control the impact of the regularization term.

Intuitively, a simple way to define the regularization term is to enforce the target factor sub-matrices U(d)

C and V(d)

C in 
target system to be the same as the source factor sub-matrices U(s)

C and V(s)
C , respectively, i.e.,

R
(

U(d)
C ,V(d)

C ,U(s)
C ,V(s)

C

)
=

∥∥∥W(s)
C − W(d)

C

∥∥∥2

F
, (13)

where W(d)

C = [U(d)

C V(d)

C ], W(s)
C = [U(s)

C V(s)
C ] with U(d)

C , U(s)
C ∈ R

k×n1 , V(d)

C , V(s)
C ∈ R

k×n2 , and n1 + n2 = |C|. The regularization 
term defined in (13) is based on an “identical” assumption on the factor sub-matrices UC and VC : the source and the target 
systems should share the same factor sub-matrices UC and VC , i.e., U(s)

C = U(d)

C = UC and V(s)
C = V(d)

C = VC . This assumption 
is similar to that used in CMF, and may be too restricted to satisfy in practice.

Alternatively, we propose to use the similarities between entities estimated in the source system as priors to constrain 
the similarities between the corresponding entities in the target system. The motivation is that if two entities in the source 
system are similar to each other, then their correspondences tend to be similar to each other in the target system as well. 
Therefore, we propose to use the following regularization term on the factor sub-matrices,

R
(

U(d)
C ,V(d)

C ,U(s)
C ,V(s)

C

)
= tr

(
W(d)

C L(s)
C W(d)

C
�)

, (14)

where tr(·) denotes the trace of a matrix, and L(s)
C =

[
L(s)

U 0
0 L(s)

V

]
, with L(s)

U = D(s)
U − A(s)

U and L(s)
V = D(s)

V − A(s)
V , where 

A(s)
U = U(s)�

C U(s)
C and A(s)

V = V(s)�
C V(s)

C are the similarity matrices of the corresponding users and items in the source system, 
respectively. The diagonal matrices D(s)

U and D(s)
V are defined as [D(s)

U ]ii = ∑
j[A(s)

U ]i j and [D(s)
V ]ii = ∑

j[A(s)
V ]i j , respectively. 

The matrices W(s)
C and W(d)

C are as the same as defined in (13), and the matrices L(s)
U and L(s)

V are known as the Laplacian 
matrices [43]. Note that a similar regularization term has been proposed in [44]. However, their work is focused on utilizing 
relational information for single-domain CF, and the Laplacian matrix is constructed using links between entities in a single 
domain.

4.1.2. High-level idea on ActiveLearn()

Based on the extended matrix factorization method introduced above, intuitively, at each iteration, we should select 
entities (either items or users) in the target system, whose predictions by the current CF model are of most uncertainty, to 
query their correspondences in the source system. In this way, knowledge transferred from the source system can improve 
the prediction accuracy on the most uncertain target-system entities, and thus improve the overall prediction accuracy for 
the target system. Similar ideas have been widely used in many active learning approaches to various applications [45]. 
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However, in the context of recommender systems, users’ ratings on items typically follow a power-law distribution, which 
is also known as the long tail problem. Specifically, regarding items, the long tail is composed of a small number of popular 
items with lots of users’ ratings, and the rest are located in the heavy tail, which are not sold well and only have few 
users’ ratings. Similarly, regarding users, the long tail is composed of a small number of active users who give a lots of 
ratings on items, and the rest are located in the heavy tail, who are inactive to give items ratings. It has been shown that 
matrix-factorization-based CF methods usually fail to make confident predictions on the items (or users) for a specific user 
(or item), whose historical ratings are rare. Therefore, the items (or users) of the most uncertain predictions in the target 
recommender system tend to be in the tail with high probabilities. Furthermore, since we assume the source and the target 
recommender systems be similar, if the items (or users) are in the tail in the target system, then their correspondences tend 
to be in the tail in the source system as well. This implies that the predictions on the corresponding entities in the source 
system may not be precise either, resulting in limited knowledge transferred through the extended matrix factorization 
method. Therefore, besides focusing on prediction uncertainty, we need to take the long tail issue into consideration when 
designing an active entity selection strategy for building cross-system correspondences.

At a high level, we propose an active entity selection strategy for the target domain as follow. For simplicity in descrip-
tion, in this section and the subsequent sections, we only describe how to actively select users from the target system for 
querying corresponding users in the source system. Procedure on actively selecting items for correspondences construction 
is similar.

• We first denote by δ(d)(u, v) an certainty measure of the prediction of a matrix-factorization-based CF model on a 
user-item pair (u, v) in the target system. The larger is the value, the more certain or confident is the prediction.

• With δ(d)(u, v), we then define an entity-level certainty measure on a user, δ(d)
u , as follows,

δ
(d)
u = η

1∣∣∣I(d)
u

∣∣∣
∑

v∈I(d)
u

δ(d)(u, v) + (1 − η)
1∣∣∣Î(d)
u

∣∣∣
∑

v∈Î(d)
u

δ(d)(u, v), (15)

where I(d)
u denotes the item set of observed ratings given by user u in the target system, while Î(d)

u denotes the item 
set of unobserved ratings for user u in the target system. On the right hand side of the equation, the first term is the 
average of the certainty of predictions on the user-item pairs for user u, whose rating are observed, and the second 
term is the average of the certainty of predictions on the user-item pairs for user u, whose ratings are unobserved. The 
tradeoff parameter η ∈ [0, 1] is to balance the impact of the two terms to the overall certainty of the predictions on 
user u. In this paper, we simply set η = 0.5.

• At each round or iteration, in order to select K source-system users, we first select K1 (< K ) users who are of the least 
certainty (i.e., the most uncertainty) based on δ(d)

u to construct C2, i.e., selecting K1 users whose corresponding δ(d)
u ’s 

are of smallest values. After that for the rest users {ui}’s, we select K − K1 users with largest scores according to the 
following function to construct C2,

�(d)(ui,C1) =
∑

u j∈C1
sim(ui, u j)δ

(d)
ui∑

u j∈C1
sim(ui, u j)

, (16)

where sim(ui, u j) =
∣∣∣I(d)

ui
∩I(d)

u j

∣∣∣
max

(∣∣∣I(d)
ui

∣∣∣,∣∣∣I(d)
u j

∣∣∣) is the correlation measure between the users ui and u j based on their rating 

behaviors. Finally, we set C = C1 ∩ C2, which is the set of K users to be selected. The motivation behind the scoring 
function (16) is that we aim to select users for constructing C2, who are 1) informative, i.e., with large values of {δ(d)

ui
}’s, 

and thus supposed to be “active” instead of being in the tail, and 2) of strong correlation to the pre-selected most 
uncertain users in C1, i.e., with large values of 

∑
u j∈C1

sim(ui, u j), and thus supposed to be helpful for generating 
reasonable recommendations based on the intrinsic assumption in CF.

In the following sections, we introduce three particular solutions by equipping different base matrix factorization methods 
and their transfer learning extensions in the framework, and present their specific active correspondences construction 
approaches in detail.

4.2. A solution equipped with Maximum-Margin Matrix Factorization

In this section, we first present a particular solution based on MMMF. We start by introducing an extended MMMF 
method in the transfer learning manner with partial entity correspondences between the source and the target systems, 
and then present an approach to actively selecting entities to construct correspondences between systems.
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Fig. 2. The margins of a user-item pair.

4.2.1. MMMF with partial entity correspondence
By plugging the objective of MMMF (3) and the regularization term of cross-system entity correspondences (14) into the 

framework (12), we obtain the optimization problem of the extended MMMF method in the transfer learning manner with 
partial entity correspondences between systems as follows,

min
U(d),V(d),�

∑
(u,v)∈I(d)

R−1∑
r=1

h
(

T r
uv

(
θur − U(d)�∗uV(d)∗v

))
+ λ

(
‖U(d)‖2

F + ‖V(d)‖2
F

)
+ λCtr

(
W(d)

C L(s)
C W(d)

C
�)

, (17)

where W(d)

C = [U(d)

C V(d)

C ], and W(s)
C = [U(s)

C V(s)
C ]. In the sequel, we denote by MMMFT L the optimization problem (17). For 

comparison on the impact of different regularization terms to transfer learning, we denote by MMMFC M F the optimization 
problem by replacing the last regularization term in (17) by the CMF regularization term (13) as follows,

min
U(d),V(d),�

∑
(u,v)∈I(d)

R−1∑
r=1

h
(

T r
uv

(
θur − U(d)�∗uV(d)∗v

))
+ λ

(
‖U(d)‖2

F + ‖V(d)‖2
F

)
+ λC

∥∥∥W(s)
C − W(d)

C

∥∥∥2

F
. (18)

4.2.2. Actively constructing entity correspondences through MMMF
As MMMF is a margin-based matrix factorization method, in this section, we present a margin-based approach for 

actively constructing cross-system entity correspondences. To implement the active entity selection strategy introduced in 
Section 4.1.2, we need to specify the certainty measure of the prediction on a user-item pair, δ(d)(u, v), and a user, δ(d)

u , based 
on the extended MMMF method. A common motivation behind most margin-based active learning approaches [46–48] is 
that given a margin-based model, the margin of an example denotes certainty of the prediction on the example. The larger 
the margin is for an example, the higher the certainty is for its prediction. In the following, we start by defining a margin 
on a user-item pair.

Margins on user-item pairs. Suppose that MMMF (3) or MMMFT L (17) has been applied to the collaborative data in the tar-
get system to learn the factor matrices U(d) and V(d) . The margins of a prediction with respect to the thresholds θ0, θ1, ..., θR
(θ0 = −∞ and θR = +∞) in MMMF are illustrated in Fig. 2. Intuitively, given a user-item pair (u, v) in the target domain, 
we expect the predicted rating by MMMF, U(d)�∗,uV(d)∗,v , to be in the correct interval (θxuv −1, θxuv ], and to be far from the 
boundaries (thresholds). Therefore, the margin of a user-item pair (u, v) can be defined as{

ρ
(d)
r (u, v) = U(d)�∗,uV(d)∗,v − θr, if x(d)

u,v > r,

ρ
(d)
r (u, v) = θr − U(d)�∗,uV(d)∗,v , if x(d)

u,v ≤ r.
(19)

Similar to other margin-based active learning methods, here we assume that, for a user-item pair (u, v) whose rating is not 
observed, the prediction of the current CF model is correct, i.e., x(d)

u,v = U(d)�∗,uV(d)∗,v . Based on the above definition, for each 
user-item pair (u, v), there are R −1 margins. For instance, as shown in Fig. 2, for the circle point that denotes the predicted 
rating of a user-item pair (u, v), the associated R −1 margins denoted by ρ1(u, v), ρ2(u, v), ..., and ρR−1(u, v) are the 
distances between the point and the R −1 thresholds θ1, θ2, ..., and θR−1, respectively. Among the R −1 margins, the margins 
to the left (lower) and right (upper) boundaries of the correct interval are of the most importance, which are denoted by 
ρ

(d)
L (u, v) and ρ(d)

U (u, v), respectively. For the circle point shown in Fig. 2, ρ(d)
L (u, v) = ρ

(d)
2 (u, v) and ρ(d)

U (u, v) = ρ
(d)
3 (u, v). 

Intuitively, for a user-item pair (u, v), when the predicted rating is in the middle of the correct interval, i.e., ρ(d)
L (u, v) =

ρ
(d)
U (u, v), the confidence of the prediction is the highest, because it is farthest from the two boundaries of the correct 

interval. Therefore, we define δ(d)(u, v) as the normalized margin of a user-item pair (u, v) as follows,

δ(d)(u, v) = 1 −
∣∣∣ρ(d)

L (u, v) − ρ
(d)
U (u, v)

∣∣∣
ρ

(d)
L (u, v) + ρ

(d)
U (u, v)

. (20)

Note that δ(d)(u, v) ∈ [b, 1], where b = min

(
1 − ρ

(d)
L

ρ
(d)
L +ρ

(d)
U

,1 − ρ
(d)
U

ρ
(d)
L +ρ

(d)
U

)
. When ρ(d)

L (u, v) =ρ
(d)
U (u, v), the margin obtains its 

maximum, i.e., δ(d)(u, v) =1, and when ρ(d)
(u, v) =0 or ρ(d)

(u, v) =0, the margin obtains its minimum, i.e., δ(d)(u, v) =b.
L U
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Margins on entities. With the normalized margin or certainty measure on each user-item pair defined in (20), we are able 
to define the overall margin or certainty measure on a user, δ(d)

u , using (15). With the margin-based δ(d)
u , we can implement 

the active entity selection strategy introduced in Section 4.1.2 with the extended MMMF method. In the sequel, we denote 
by MGhy this active entity selection approach.

4.3. A solution equipped with Regularized Low-Rank Matrix Factorization

In this section, we present a second particular solution with RLMF. We start by introducing an extended RLMF method 
in the transfer learning manner with flexible entity correspondences between the source and the target systems, and then 
present an active entity selection approach to constructing cross-system correspondences based on the extended RLMF.

4.3.1. RLMF with partial entity correspondence
By plugging the objective of RLMF (4) and the regularization term of cross-system entity correspondences (14) into the 

framework (12), we obtain the optimization problem of the extended RLMF method in the transfer learning manner with 
partial entity correspondences between systems as follows,

min
U(d),V(d),bu ,bv

∑
(u,v)∈I(d)

(
x(d)

uv −
(

r̄ + bu + bv + U(d)∗u
�

V(d)∗v

))2

+ λ(b2
u + b2

v)

+λ
(
‖U(d)‖2

F + ‖V(d)‖2
F

)
+ λCtr

(
W(d)

C L(s)
C W(d)

C
�)

. (21)

In the sequel, we denote by RLMFT L the optimization problem (21). For comparison on the impact of different regularization 
terms to transfer learning, we denote by RLMFC M F the optimization problem by replacing the last regularization term in 
(21) with the CMF regularization term (13) as follows,

min
U(d),V(d),bu ,bv

∑
(u,v)∈I(d)

(
x(d)

uv −
(

r̄ + bu + bv + U(d)∗u
�

V(d)∗v

))2

+ λ(b2
u + b2

v)

+λ
(
‖U(d)‖2

F + ‖V(d)‖2
F

)
+ λC

∥∥∥W(s)
C − W(d)

C

∥∥∥2

F
. (22)

4.3.2. Actively constructing entity correspondences through RLMF
Different from the margin-based approach to active correspondences construction, here, we present an error-based ap-

proach with the extended RLMF method for actively constructing entity correspondences. This approach does not aim to 
measure how much the model is likely to change, but how much its generalization error is likely to be reduced. The idea 
is to iteratively build new correspondences, with which the expected generalization error of the current CF model for the 
target system can be reduced to the utmost extent.

Expected errors on user-item pairs. Suppose that RLMF (4) or RLMFT L (21) is fed with collaborative data in the target 
system to learn a CF model that predicts yuv for each user-item pair. Given bu , bv , U, V, we can then write the expected 
error of the CF model as follows:

E E = e(X,Y), (23)

where e(·) is some loss function that measures the degree of disagreement in difference between the true ratings X and 
the model’s predictions Y. The proposed error-based active learning approach thus aims to select a set of queries Q at each 
iteration to construct K more correspondences between the source and the target system in addition to the existing set of 
correspondences such that the resulting new CF model obtains lower generalization error than any other set of queries Q′
of K correspondences construction, i.e.,

E EC+Q < E EC+Q′ , (24)

where C is the set of cross-system correspondences used in the current CF model, which can be empty. In this paper, we 
adopt the sum-of-squared-errors loss e(X, Y) = ∑

u,v(x(d)
uv − y(d)

uv )2. Therefore, the error on each user-item pair (u, v) can be 
calculated as:

e(d)(u, v) =
∥∥∥∥y(d)

uv − U(d)∗,u
�

V(d)∗,v − bu − bv

∥∥∥∥
2
,

where y(d)
uv = x(d)

uv if x(d)
uv is observed, otherwise,

y(d)
uv = arg min

r

∣∣∣∣r − U(d)∗,u
�

V(d)∗,v − bu − bv

∣∣∣∣ ,
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where r ∈ {1, ..., R}. In this way, the uncertainty of a prediction on an instance can be measured by the expected error of the 
predictive model on the instance, the larger is the expected error, the more uncertain is the prediction. However, as defined 
in Section 4.1.2, δ(d)(u, v) is a “certainty” measure, which is supposed to be larger when the corresponding prediction is 
more certain. Therefore, here, we define δ(d)(u, v) as the negative of the expected error on a user-item pair (u, v):

δ(d)(u, v) = −e(d)(u, v). (25)

Expected errors on entities. With the expected-error-based δ(d)(u, v) on a user-item pair defined in (25), we can define 
the overall uncertainty measure on a user, δ(d)

u , using (15), and implement the active entity selection strategy introduced in 
Section 4.1.2 with the extended RLMF method. In the sequel, we denote by EEhy this active entity selection approach.

4.4. A solution equipped with Probabilistic Matrix Factorization

In this section, we present the third solution based on PMF. We start by introducing an extended PMF method in the 
transfer learning manner with partial entity correspondences between the source and the target systems, and then present 
an active entity correspondences construction approach accordingly.

4.4.1. PMF with partial entity correspondence
By plugging the objective of PMF (11) and the regularization term of cross-system entity correspondences (14) into the 

framework (12), we obtain the optimization problem of the extended PMF method in the transfer learning manner with 
partial entity correspondences between systems as follows,

min
Y(d),V(d),H(d)

∑
(u,v)∈I(d)

(
x(d)

uv − g

((
Y(d)∗u + Ĥ(d)

∗h

)�
V(d)∗v

))2

+ λY ‖Y(d)‖2
F

+λV ‖V(d)‖2
F + λH‖H(d)‖2

F + λCtr

(
W(d)

C L(s)
C W(d)

C
�)

, (26)

where

Ĥ(d)

∗h =
∑n

h=1 IuhH(d)

∗h∑n
h=1 Iuh

.

In the sequel, we denote by PMFT L the optimization problem (26). For comparison on the impact of different regularization 
terms to transfer learning, we denote by PMFC M F the optimization problem by replacing the last regularization term in (26)
by the CMF regularization term (13) as follows,

min
Y(d),V(d),H(d)

∑
(u,v)∈I(d)

(
x(d)

uv − g

((
Y(d)∗u + Ĥ(d)

∗h

)�
V(d)∗v

))2

+ λY ‖Y(d)‖2
F

+λV ‖V(d)‖2
F + λH‖H(d)‖2

F + λC
∥∥∥W(s)

C − W(d)
C

∥∥∥2

F
. (27)

4.4.2. Actively constructing entity correspondences through PMF
With the probabilities on predictions generated by PMF, we present an entropy-based method for actively constructing 

entity correspondences across domains, which attempts to sequentially minimize the expected entropy of the predictions.

Entropy on user-item pairs. Suppose that PMF (11) or PMFT L (26) is performed on the collaborative data in the target 
system to learn a CF model. Given a user-item pair (u, v), the entropy of the prediction yuv given by the current model can 
be defined as,

H(d)(u, v)=−
(

1−z(d)(u, v)
)

log
(

1−z(d)(u, v)
)
−z(d)(u, v) log

(
z(d)(u, v)

)
, (28)

where z(d)(u, v) = N
(

y(d)
uv |g(U(d)∗u

�
V(d)∗v ),σ 2

)
, and U(d)∗u = Y(d)∗u +

∑n
h=1 IuhH(d)

∗h∑n
w=1 Iuh

. If x(d)
uv is observed, y(d)

uv = x(d)
uv , where x(d)

uv has 

been transformed to [0, 1] through t(x) = x−1
R−1 , otherwise, y(d)

uv = t(r(d)
uv ), where

r(d)
uv = arg max

r

∣∣∣∣N (
r|g(U(d)∗u

�
V(d)∗v ),σ 2

)∣∣∣∣ , and r ∈ {1, ..., R}.

In this way, the uncertainty of a prediction on an instance can be measured the entropy of the prediction, the larger is 
the entropy, the more uncertain is the prediction. Therefore, similar to error-based certainty measure, we define δ(d)(u, v)

as the negative of the entropy of the prediction on a user-item pair (u, v):

δ(d)(u, v) = −H(d)(u, v). (29)
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Entropy on entities. With the entropy-based δ(d)(u, v) on a user-item pair defined in (29), we can define the overall un-
certainty measure on a user, δ(d)

u , using (15), and implement the active entity selection strategy introduced in Section 4.1.2
with the extended PMF method. In the sequel, we denote by EShy this active entity selection approach.

5. Experiments

5.1. Datasets and experimental setting

We evaluate our proposed framework on two datasets: Netflix3 and Douban.4 The Netflix dataset contains more than 
100 millions ratings given by more than 480,000 users on 17,770 movies with ratings in {1, 2, 3, 4, 5}. And Douban is a 
popular recommendation website in China, which has over 100 millions users. It mainly provides three recommendation 
services, including movies, books and music with rating scale in {1, 2, 3, 4, 5} as well.

For the Netflix dataset, we filter out movies with less than 5 ratings for our experiments. The dataset is partitioned into 
two parts along two disjoint sets of users with a same set of movies. One part consists of ratings given by 50% users with 
1.2% rating density, which serves as the source domain. The remaining users are considered as the target domain with 0.7%
rating density. For the Douban dataset, we crawl a set consisting of 12,000 users and 100,000 items with only movies and 
books. Users with less than 10 ratings are discarded. There remain 270,000 ratings on 3,500 books, and 1,400,000 ratings on 
8,000 movies, given by 11,000 users. The density of the ratings on books and movies are 0.6% and 1.5%, respectively. We 
consider movie ratings as the source domain and book ratings as the target domain. In this task, all users are shared but 
items are disjoint. Furthermore, since there are about 6,000 movies shared by Netflix and Douban, we extract ratings on 
the shared movies from Netflix and Douban, respectively, and obtain 490,000 ratings given by 120,000 users from Douban 
with rating density 0.7%, and 1,600,000 ratings given by 10,000 users from Netflix with density 2.6%. We consider ratings 
on Netflix as the source domain and those on Douban as the target domain. In total, we construct three cross-system CF 
tasks, and denote by Task 1: Netflix → Netflix, Task 2: DoubanMovie → DoubanBook and Task 3: Netflix → DoubanMovie, 
respectively.

In the experiments, for each time, we split each target domain data into a training set of 80% preference entries and a 
test set of 20% preference entries, and report the average results of 10 random times. The parameters of the model, i.e., the 
number of latent factors k and the number of iterations T , are tuned on some hand-out data of Task 1: Netflix → Netflix, 
and fixed to all experiments.5 Here, T = 10, and k = 5. In all experiments, we set K1 = � K

2 �, and the regularizer weight 
λC = 0.5. For evaluation criterion, we use Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) defined as,

RMSE =
√√√√ ∑

(u,v)∈I

(xuv − x̂uv)2

|I| ,

MAE =
∑

(u,v)∈I

∣∣xuv − x̂uv
∣∣

|I| ,

where xuv and x̂uv are the true and predicted ratings, respectively, and |I| is the number of test entries. The smaller is the 
value, the better is the performance.

5.2. Overall comparison results

In the first experiment, we qualitatively show the effectiveness of our proposed active transfer learning framework for 
cross-system CF compared with the following baselines:

• NoTransf without correspondences (NoTransf (w/o corr.)): to apply state-of-the-art CF models on the target-domain 
collaborative data directly without either active learning or transfer learning. In this paper, regarding state-of-the-art CF 
models for comparison, we use MMMF, RLMF, and PMF as described in Section 3.1.

• NoTransf with actively constructed correspondences (NoTransf (x% corr)): to first apply active learning to construct 
cross-domain entity correspondences (x% of all the available cross-system correspondences), and then align the source 
and target domain data to generate a unified item-user matrix. Finally, we apply state-of-the-art CF models on the 
unified matrix for recommendations.

• CBT: to apply the codebook-based-transfer (CBT) method on the source and target domain data for recommendations. 
As mentioned in Section 1, CBT does not require any entity correspondence to be constructed.

3 http :/ /www.netflix .com.
4 http :/ /www.douban .com.
5 Suppose that total budget is ρ , which is the total number of correspondences to be constructed, we set the number of correspondences actively 

constructed in each iteration as K = ρ/T .

http://www.netflix.com
http://www.douban.com
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Table 1
Overall comparison results on the three datasets in terms of RMSE. Numbers in bold font indicate the best prediction performance excluding MT L with 
full correspondences.

Methods Tasks

Task 1 Task 2 Task 3

RMSE CBT (w/o corr.) 0.8846 0.8656 0.8246
(± 0.0002) (± 0.0002) (± 0.0002)

RLMF NoTransf (w/o corr.) 0.8900 0.8804 0.8520
(± 0.0004) (± 0.0017) (± 0.0003)

NoTransf (0.1% corr.) 0.9112 0.8876 0.8643
(± 0.0002) (± 0.0003) (± 0.0003)

RLMFT L (0.1% corr.) 0.8658 0.8255 0.7624
(± 0.0001) (± 0.0002) (± 0.0004)

RLMFT L (100% corr.) 0.8352 0.7909 0.7379
(± 0.0002) (± 0.0003 ) (± 0.0003)

MMMF NoTransf (w/o corr.) 0.8800 0.8784 0.8578
(± 0.0001) (± 0.0002) (± 0.0002)

NoTransf (0.1% corr.) 0.9103 0.8837 0.8589
(± 0.0004) (± 0.0001) (± 0.0002)

MMMFT L (0.1% corr.) 0.8607 0.8192 0.7462
(±0.0003) (±0.0003) (± 0.0001)

MMMFT L (100% corr.) 0.8338 0.7863 0.7147
(± 0.0002) (± 0.0002) (± 0.0001)

PMF NoTransf (w/o corr.) 0.8754 0.8780 0.8458
(± 0.0002) (± 0.0003) (± 0.0001)

NoTransf (0.1% corr.) 0.8803 0.8923 0.8527
(± 0.0002) (± 0.0002) (± 0.0003)

PMFT L (0.1% corr.) 0.8702 0.8252 0.7662
(± 0.0002) (± 0.0002) (± 0.0006)

PMFT L (100% corr.) 0.8438 0.7879 0.7479
(± 0.0002) (± 0.0005) (± 0.0002)

• MT L with full correspondences (MT L (100% corr.)): to apply the proposed transfer learning approaches on the source 
and target domain data with full entity correspondences for recommendations, where M represents RLMF, MMMF and 
PMF accordingly. Note that these methods, which assume all entity correspondences be available, can be considered as 
an upper bound of the proposed active transfer learning methods.

The overall comparison results on the three cross-domain tasks are shown in Tables 1–2. For the active learning ap-
proaches, we use MGhy , EEhy and EShy as proposed in Section 4.1.2 with the extended matrix factorization methods 
MMMFT L , RLMFT L , and PMFT L , respectively. As can be observed from the rows labeled with “NoTransf (w/o corr.)” in the 
table, applying state-of-the-art CF models on the extremely sparse target domain data directly is not able to obtain precise 
recommendation results in terms of RMSE or MAE. The results of rows labeled with “NoTransf (0.1% corr.)” in the table 
suggest that aligning all the source and target data to a unified item-user matrix and then performing state-of-the-art CF 
models on it cannot help to boost the recommendation performance, but may even hurt the performance compared to that 
of applying CF models on the target domain data only. This is because the alignment makes the matrix to be factorized 
larger but still very sparse, resulting in a more difficult learning task. From the table we can also observe that the transfer 
learning method CBT performs better than the NoTransf methods. However, our proposed active transfer learning meth-
ods RLMFT L , MMMFT L and PMFT L with only 0.1% entity correspondences achieve better performance than CBT in terms 
of RMSE and MAE (around 2.2%, 4.9%, and 8.1% improvement in terms of RMSE, and 2.0%, 6.7%, and 8.6% improvement in 
terms of MAE over Task 1, Task 2, and Task 3, respectively). This verifies the conclusion that making use of cross-system 
entity correspondences as a bridge is useful for knowledge transfer across recommender systems. Among the three proposed 
methods, MMMFT L performs best on the three tasks. Finally, by considering the performance of active strategies with full 
entity correspondences as the knowledge-transfer upper bound, and the performance of base models as the lower bound, 
our proposed active transfer learning methods with only 0.1% entity correspondences to be cross-labeled can achieve around 
34.13%, 61.41% and 79.28% in RMSE or 46.09%, 68.91% and 82.66% in MAE knowledge transfer ratio as defined in (30) on 
average over Task 1, Task 2, and Task 3, respectively.

transfer ratio of MT L(0.1%) = NoTransf (w/o corr.) −MT L(0.1%)

NoTransf (w/o corr.) −MT L(100%)
. (30)
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Table 2
Overall comparison results on the three datasets in terms of MAE. Numbers in bold font indicate the best prediction performance excluding MT L with full 
correspondences.

Methods Tasks

Task 1 Task 2 Task 3

MAE CBT (w/o corr.) 0.6824 0.6642 0.6250
(± 0.0003) (± 0.0002) (± 0.0004)

RLMF NoTransf (w/o corr.) 0.6976 0.6735 0.6545
(± 0.0003) (± 0.0003) (± 0.0002)

NoTransf (0.1% corr.) 0.6913 0.6784 0.6583
(± 0.0002) (± 0.0001) (± 0.0004)

RLMFT L (0.1% corr.) 0.6679 0.6231 0.5971
(± 0.0002) (± 0.0003) (± 0.0004)

RLMFT L (100% corr.) 0.6457 0.5942 0.5763
(± 0.0002) (± 0.0002) (± 0.0004)

MMMF NoTransf (w/o corr.) 0.6812 0.6720 0.6583
(± 0.0003) (± 0.0002) (± 0.0004)

NoTransf (0.1% corr.) 0.6983 0.6784 0.6593
(± 0.0003) (± 0.0002) (± 0.0002)

MMMFT L (0.1% corr.) 0.6602 0.6174 0.5503
(±0.0002) (±0.0004) (±0.0002)

MMMFT L (100% corr.) 0.6343 0.5876 0.5387
(± 0.0005) (± 0.0003) (± 0.0002)

PMF NoTransf (w/o corr.) 0.6863 0.6749 0.6310
(± 0.0002) (± 0.0002) (± 0.0003)

NoTransf (0.1% corr.) 0.6931 0.6852 0.6370
(± 0.0002) (± 0.0003) (± 0.0003)

PMFT L (0.1% corr.) 0.6780 0.6191 0.5656
(± 0.0003) (± 0.0002) (± 0.0003)

PMFT L (100% corr.) 0.6634 0.6038 0.5534
(± 0.0004) (± 0.0004) (± 0.0001)

5.3. Experiments on different active learning strategies

In the second experiment, we aim to verify the performance of our proposed active transfer learning framework plugging 
with different entity selection strategies. Here, we use MT L as the base transfer learning approach to cross-domain CF. 
Regarding entity selection strategies, besides the proposed approaches, MGhy with MMMFT L , EEhy with RLMFT L , and EShy
with PMFT L , we also conduct comparison experiments on the following strategies:

• Random: at each iteration, to select K entities randomly in the target domain to query their correspondences in the 
source domain.

• Many: at each iteration, to select K entities with most historical ratings, i.e., the users who give most ratings on items 
or the items which attract most users to give ratings, in the target domain to query their correspondences in the source 
domain.

• Few: at each iteration, to select K entities with fewest historical ratings, i.e., the users who give fewest ratings on items 
or the items which attract fewest users to give ratings, in the target domain to query their correspondences in the 
source domain.

• MGmin , EEmin , ESmin: at each iteration, to select K entities whose predicted ratings are of the most uncertainty based 
on δ(d)

u or δ(d)
v by using MMMFT L , RLMFT L , and PMFT L , respectively, in the target domain to query their correspondences 

in the source domain.
• MGmax , EEmax , ESmax: at each iteration, to select K entities whose predicted ratings are of the most certainty based on 

δ
(d)
u or δ(d)

v by using MMMFT L , RLMFT L , and PMFT L , respectively, in the target domain to query their correspondences 
in the source domain.

Fig. 3 shows the results of MT L with different entity selection strategies under varying proportions of entity correspon-
dences to be constructed. From the figure, we can observe that the active approaches based on the entity-level margin, 
error and entropy (i.e., Amin , Amax , and Ahy , where A represents MG, EE, ES, respectively) perform much better than other 
approaches. In addition, compared with Amin and Amax , the proposed Ahy can avoid selecting long-tail users in the source 
domain for knowledge transfer, thus performs best.
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Fig. 3. Results on different entity selection strategies under varying proportions of entity correspondences to be labeled.

5.4. Experiments on different cross-domain regularization terms

As mentioned in Section 4, the regularization term R(U(d)

C , V(d)

C , U(s)
C , V(s)

C ) in (12) for cross-system knowledge transfer can 
be substituted by different forms, e.g., (13) or (14), which results in different transfer learning approaches, MC M F or MT L

accordingly. Therefore, in the third experiment, we use Ahy as the entity selection strategy, and compare the performance 
of MT L and MC M F in terms of RMSE. As can be seen from Fig. 4, the proposed MT L outperforms its corresponding MC M F

consistently on the three cross-system tasks under varying proportions of the labeled entity correspondences. This implies 
that using similarities between entities from the source domain data as priors is more safe and useful for knowledge transfer 
across recommender systems than using the factor matrices factorized from the source domain data as priors directly.

5.5. Computational time analysis

For the last experiment, we study computational time of the proposed three active transfer learning approaches. The 
computer used for running the computational time comparison experiments is equipped with 1.4 GHz Intel Core i5, 8 GB 
memory and 512 GB SSD. Comparison results under varying proportions of entity correspondences to be constructed on
Task 1 are shown in Fig. 5. Note that when the proportion of entity correspondences equals to 0, the proposed active 
transfer learning approaches, MMMFT L , RLMFT L , and PMFT L , are reduced to the NoTransf methods without correspondences, 
i.e., MMMF, RLMF, and PMF using the target domain data only, respectively. As the matrix factorization on the source system 
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Fig. 4. Results on different cross-domain regularizers under varying proportions of entity correspondences to be labeled.

data can be pre-trained, the reported computational time does not include the time on generating U(s) and V(s) for the 
source system. Furthermore, we also ignore the time on manually labeling cross-system entity correspondences. From the 
figure, we can find that as MT L aims to exploit cross-system entity correspondences to transfer knowledge from the source 
system to the target system, the computational time increases when the number of the constructed cross-system entity 
correspondences increases. However, when the proportion of the constructed entity correspondences is not larger than 20%, 
the computational time of MT L is very close to its corresponding NoTransf method without correspondences, respectively. 
From the figure, we can also observe that among the three active transfer learning approaches, MMMFT L ’s computation cost 
is most expensive, while PMFT L is the most computationally efficient. In fact, the computational time of the active transfer 
learning approach depends on its base matrix factorization method. In practice, parallel or distributed matrix factorization 
techniques can be adopted to significantly boost the computational efficiency of the proposed solutions [49–53]. However, 
it is beyond the scope of this work.

Together with the results shown in Tables 1–2, we may conclude that among the three proposed active transfer learning 
approaches, if prediction accuracy is of the most priority, then MMMFT L is the best choice. If computational efficiency is of 
the most priority, then PMFT L is the best choice. RLMFT L can be considered as a trade-off solution. However, it should be 
emphasized again that the focus of this work is not discussing which matrix factorization method can be adapted into our 
framework to achieve the best performance for knowledge transfer across different recommender systems, but providing 
a general active transfer learning framework, where researchers can extend their favor matrix factorization methods for 
different applications and datasets.
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Fig. 5. Computation time analysis on the proposed active transfer learning approaches.

6. Conclusions

In this paper, we present a novel framework on active transfer learning for cross-system recommendations. In the pro-
posed framework, we 1) extend previous transfer learning approaches to CF in a flexible entity corresponding manner, and 
2) propose an entity selection strategy to actively construct entity correspondences across different recommender systems. 
In particular, we develop three specific solutions based on the framework. Our experimental results show that compared 
with the transfer learning method which requires full entity correspondences, our proposed framework can achieve around
34.13%, 61.41% and 79.28% in RMSE or 46.09%, 68.91% and 82.66% in MAE knowledge-transfer ratio, while only requires 
0.1% of the entities to have correspondences. For future work, we are planning to apply the proposed framework to other 
applications, such as cross-system link prediction in social networks.
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